LIBER SCRIPTUS PROFERETUR

VV: What have you learned from science?

EC: Only one thing: that one ought to wash one’s hands before touching nature.

VV: You want to imply that most scientists don’t deserve science?

EC: Yes. But they have made science into something that they deserve.

VV: What is the remedy?

EC: There is no remedy.

VV: At the place where you are now it is not for you to blow the trumpet of the Apocalypsis. Another tuba will spread its miraculous sound. I repeat my question.

EC: The first step would have to be to make science small again and to disengage it from technology and from the pursuit of power.

VV: How would you do this?

EC: I don’t think it can be done according to a blueprint, and it will not take place without a series of catastrophes of a dimension that would make mankind stop and look. Our kind of science has become a disease of the Western mind. We were taught that by digging deeper and deeper we should reach the center of our world. But all we find is rock and fire. So we take the stone as our heart and the flame as our hope.

VV: Is that all that has been found?

EC: We have been lured into a search for the ever-diminishing dimensions. Each new decimal opens a new grotto of delights. Drowning in precision, drunk with controls of controls, we lose ourselves in the quick and dead sands of eternity. It will be too late when we finally become aware of our error. The center of our world is not where we have been looking for it.

Erwin Chargaff, Liber Scriptus Proferetur (from Heraclitean Fire: Sketches from a Life before Nature).

THE SILENCE OF THE HEAVENS

Image result for erwin chargaff

I CAME TO BIOCHEMISTRY through chemistry; I came to chemistry, partly by the labyrinthine routes that I have related, and partly through the youthfully romantic notion that the natural sciences had something to do with nature. What I liked about chemistry was its clarity surrounded by darkness; what attracted me, slowly and hesitatingly, to biology was its darkness surrounded by the brightness of the givenness of nature, the holiness of life. And so I have always oscillated between the brightness of reality and the darkness of the unknowable. When Pascal speaks of God in hiding, Deus absconditus, we hear not only the profound existential thinker, but also the great searcher for the reality of the world. I consider this unquenchable resonance as the greatest gift that can be bestowed on a naturalist.

When I look back on my early way in science, on the problems I studied, on the papers I published-and even more, perhaps, on those things that never got into print- I notice a freedom of movement, a lack of guild-imposed narrowness, whose existence in my youth I myself, as I write this, had almost forgotten. The world of science was open before us to a degree that has become inconceivable now, when pages and pages of application papers must justify the plan of investigating, “in depth,” the thirty-fifth foot of the centipede; and one is judged by a jury of one’s peers who are all centipedists or molecular podiatrists. I would say that most of the great scientists of the past could not have arisen, that, in fact, most sciences could not have been founded, if the present utility-drunk and goaldirected
attitude had prevailed.

It is clear that to meditate on the whole of nature, or even on the whole of living nature, is not a road that the natural sciences could long have traveled. This is the way of the poet, the philosopher, the seer. A division of labor had to take place. But the overfragmentation of the vision of nature- or actually its complete disappearance among the majority of scientists-has created a Humpty-Dumpty world that must become increasingly unmanageable as more and tinier pieces are broken off, “for closer inspection,” from the continuum of nature. The consequence of the excessive specialization, which often brings us news that nobody cares to hear, has been that in revisiting a field with which one had been very familiar, say, ten or twenty years earlier, one feels like an intruder in one’s own bathroom, with twenty-four grim experts sharing the tub.

Profounder men than I have failed to diagnose, let alone cure, the disease that has infected us all, and I should say that the ostensible goals have obliterated the real origins of our search. Without a firm center we flounder. The wonderful, inconceivably intricate tapestry is being taken apart strand by strand; each thread is being pulled out, torn up, and analyzed; and at the end even the memory of the design is lost and can no longer be recalled. What has become of an enterprise that started as an exploration of the gesta Dei per naturam?

To follow the acts of God by way of nature is itself an act that can never be completed. Kepler knew this and so did many others, but it is now being forgotten. In general, it is hoped that our road will lead to understanding; mostly it leads only to explanations. The difference between these two terms is also being forgotten: a sleight of hand that I have considered in a recent essay, Einstein is somewhere quoted as having said: “The ununderstandable about nature is that it is understandable.” I think he should have said: “that it is explainable.” These are two very different things, for we understand very little about nature. Even the most exact of our exact sciences float above axiomatic abysses that cannot be explored. It is true, when one’s reason runs a fever, one believes, as in a dream, that this understanding can be grasped; but when one wakes up and the fever is gone, all one is left with are litanies of shallowness.

In our time, so-called laws of nature are being fabricated on the assembly line. But how often is the regularity of these “laws of nature” only the reflection of the regularity of the method employed in their formulation! Lately, many tricks have been discovered about nature; but these tricks seem to have been specially produced by nature for the imbeciles to find out; and there is no Maimonides to guide them out of their confusion. In other words, science is still faced with the age-old predicament, the lack of ultimate verification. It is written in the Analects of Confucius (XII, 19): “The Master said, Heaven does not speak.”

Erwin Chargaff, The Silence of the Heavens (from Heraclitean Fire: Sketches from a Life before Nature).

BOILING GEOMETRY

If I boil water in a kettle on a stove, the operation and the objects that support it are, in reality, bound up with a multitude of other objects and a multitude of other operations; in the end, I should find that our entire solar system is concerned in what is being done at this particular point of space. But, in a certain measure, and for the special end I am pursuing, I may admit that things happen as if the group water-kettle-stove were an independent microcosm. That is my first affirmation. Now, when I say that this microcosm will always behave in the same way, that the heat will necessarily, at the end of a certain time, cause the boiling of the water, I admit that it is sufficient that a certain number of elements of the system be given in order that the system should be complete; it completes itself automatically, I am not free to complete it in thought as I please. The stove, the kettle and the water being given, with a certain interval of duration, it seems to me that the boiling, which experience showed me yesterday to be the only thing wanting to complete the system, will complete it tomorrow, no matter when tomorrow may be. What is there at the base of this belief? Notice that the belief is more or less assured, according as the case may be, but that it is forced upon the mind as an absolute necessity when the microcosm considered contains only magnitudes. If two sides of a triangle and the contained angle are given, the third side arises of itself and the triangle completes itself automatically. I can, it matters not where and it matters not when, trace the same two sides containing the same angle: it is evident that the new triangles so formed can be superposed on the first, and that consequently the same third side will come to complete the system. Now, if my certitude is perfect in the case in which I reason on pure space determinations, must I not suppose that, in the other cases, the certitude is greater the nearer it approaches this extreme case? Indeed, may it not be the limiting case which is seen through all the others and which colors them, accordingly as they are more or less transparent, with a more or less pronounced tinge of geometrical necessity? In fact, when I say that the water on the fire will boil today as it did yesterday, and that this is an absolute necessity, I feel vaguely that my imagination is placing the stove of yesterday on that of today, kettle on kettle, water on water, duration on duration, and it seems then that the rest must coincide also, for the same reason that, when two triangles are superposed and two of their sides coincide, their third sides coincide also. But my imagination acts thus only because it shuts its eyes to two essential points. For the system of today actually to be superimposed on that of yesterday, the latter must have waited for the former, time must have halted, and everything become simultaneous: that happens in geometry, but in geometry alone. Induction therefore implies first that, in the world of the physicist as in that of the geometrician, time does not count. But it implies also that qualities can be superposed on each other like magnitudes. If, in imagination, I place the stove and fire of today on that of yesterday, I find indeed that the form has remained the same; it suffices, for that, that the surfaces and edges coincide; but what is the coincidence of two qualities, and how can they be superposed one on another in order to ensure that they are identical? Yet I extend to the second order of reality all that applies to the first. The physicist legitimates this operation later on by reducing, as far as possible, differences of quality to differences of magnitude; but, prior to all science, I incline to liken qualities to quantities, as if I perceived behind the qualities, as through a transparency, a geometrical mechanism. The more complete this transparency, the more it seems to me that in the same conditions there must be a repetition of the same fact. Our inductions are certain, to our eyes, in the exact degree in which we make the qualitative differences melt into the homogeneity of the space which subtends them, so that geometry is the ideal limit of our inductions as well as of our deductions. The movement at the end of which is spatiality lays down along its course the faculty of induction as well as that of deduction, in fact, intellectuality entire. Continue reading “BOILING GEOMETRY”

THE BLIND SPOT

In general terms, here’s how the scientific method works. First, we set aside aspects of human experience on which we can’t always agree, such as how things look or taste or feel. Second, using mathematics and logic, we construct abstract, formal models that we treat as stable objects of public consensus. Third, we intervene in the course of events by isolating and controlling things that we can perceive and manipulate. Fourth, we use these abstract models and concrete interventions to calculate future events. Fifth, we check these predicted events against our perceptions. An essential ingredient of this whole process is technology: machines – our equipment – that standardise these procedures, amplify our powers of perception, and allow us to control phenomena to our own ends.

The Blind Spot arises when we start to believe that this method gives us access to unvarnished reality. But experience is present at every step. Scientific models must be pulled out from observations, often mediated by our complex scientific equipment. They are idealisations, not actual things in the world. Galileo’s model of a frictionless plane, for example; the Bohr model of the atom with a small, dense nucleus with electrons circling around it in quantised orbits like planets around a sun; evolutionary models of isolated populations – all of these exist in the scientist’s mind, not in nature. They are abstract mental representations, not mind-independent entities. Their power comes from the fact that they’re useful for helping to make testable predictions. But these, too, never take us outside experience, for they require specific kinds of perceptions performed by highly trained observers. 

For these reasons, scientific ‘objectivity’ can’t stand outside experience; in this context, ‘objective’ simply means something that’s true to the observations agreed upon by a community of investigators using certain tools. Science is essentially a highly refined form of human experience, based on our capacities to observe, act and communicate. 

So the belief that scientific models correspond to how things truly are doesn’t follow from the scientific method. Instead, it comes from an ancient impulse – one often found in monotheistic religions – to know the world as it is in itself, as God does. The contention that science reveals a perfectly objective ‘reality’ is more theological than scientific.

Recent philosophers of science who target such ‘naive realism’ argue that science doesn’t culminate in a single picture of a theory-independent world. Rather, various aspects of the world – from chemical interactions to the growth and development of organisms, brain dynamics and social interactions – can be more or less successfully described by partial models. These models are always bound to our observations and actions, and circumscribed in their application.

The fields of complex systems theory and network science add mathematical precision to these claims by focusing on wholes rather than the reduction to parts. Complex systems theory is the study of systems, such as the brain, living organisms or the Earth’s global climate, whose behaviour is difficult to model: how the system responds depends on its state and context. Such systems exhibit self-organisation, spontaneous pattern-formation and sensitive dependence on initial conditions (very small changes to the initial conditions can lead to widely different outcomes).

Network science analyses complex systems by modelling their elements as nodes, and the connections between them as links. It explains behaviour in terms of network topologies – the arrangements of nodes and connections – and global dynamics, rather than in terms of local interactions at the micro level.

Inspired by these perspectives, we propose an alternative vision that seeks to move beyond the Blind Spot. Our experience and what we call ‘reality’ are inextricable. Scientific knowledge is a self-correcting narrative made from the world and our experience of it evolving together. Science and its most challenging problems can be reframed once we appreciate this entanglement.

Let’s return to the problem we started with, the question of time and the existence of a First Cause. Many religions have addressed the notion of a First Cause in their mythic creation narratives. To explain where everything comes from and how it originates, they assume the existence of an absolute power or deity that transcends the confines of space and time. With few exceptions, God or gods create from without to give rise to what is within.

Unlike myth, however, science is constrained by its conceptual framework to function along a causal chain of events. The First Cause is a clear rupture of such causation – as Buddhist philosophers pointed out long ago in their arguments against the Hindu theistic position that there must be a first divine cause. How could there be a cause that was not itself an effect of some other cause? The idea of a First Cause, like the idea of a perfectly objective reality, is fundamentally theological.

These examples suggest that ‘time’ will always have a human dimension. The best we can aim for is to construct a scientific cosmological account that is consistent with what we can measure and know of the Universe from inside. The account can’t ever be a final or complete description of cosmic history. Rather, it must be an ongoing, self-correcting narrative. ‘Time’ is the backbone of this narrative; our lived experience of time is necessary to make the narrative meaningful. With this insight, it seems it’s the physicist’s time that is secondary; it’s merely a tool to describe the changes we’re able to observe and measure in the natural world. The time of the physicist, then, depends for its meaning on our lived experience of time.

We can now appreciate the deeper significance of our three scientific conundrums – the nature of matter, consciousness and time. They all point back to the Blind Spot and the need to reframe how we think about science. When we try to understand reality by focusing only on physical things outside of us, we lose sight of the experiences they point back to. The deepest puzzles can’t be solved in purely physical terms, because they all involve the unavoidable presence of experience in the equation. There’s no way to render ‘reality’ apart from experience, because the two are always intertwined.

To finally ‘see’ the Blind Spot is to wake up from a delusion of absolute knowledge. It’s also to embrace the hope that we can create a new scientific culture, in which we see ourselves both as an expression of nature and as a source of nature’s self-understanding. We need nothing less than a science nourished by this sensibility for humanity to flourish in the new millennium.

https://aeon.co/essays/the-blind-spot-of-science-is-the-neglect-of-lived-experience
Adam Frank, Marcelo Gleiser and Evan Thompson

THE THREE R’s

Image result for henri bergson

The error of radical finalism, as also that of radical mechanism, is to extend too far the application of certain concepts that are natural to our intellect. Originally, we think only in order to act. Our intellect has been cast in the mold of action. Speculation is a luxury, while action is a necessity. Now, in order to act, we begin by proposing an end; we make a plan, then we go on to the detail of the mechanism which will bring it to pass. This latter operation is possible only if we know what we can reckon on. We must therefore have managed to extract resemblances from nature, which enable us to anticipate the future. Thus we must, consciously or unconsciously, have made use of the law of causality. Moreover, the more sharply the idea of efficient causality is defined in our mind, the more it takes the form of a mechanical causality. And this scheme, in its turn, is the more mathematical according as it expresses a more rigorous necessity. That is why we have only to follow the bent of our mind to become mathematicians. But, on the other hand, this natural mathematics is only the rigid unconscious skeleton beneath our conscious supple habit of linking the same causes to the same effects; and the usual object of this habit is to guide actions inspired by intentions, or, what comes to the same, to direct movements combined with a view to reproducing a pattern. We are born artisans as we are born geometricians, and indeed we are geometricians only because we are artisans. Thus the human intellect, inasmuch as it is fashioned for the needs of human action, is an intellect which proceeds at the same time by intention and by calculation, by adapting means to ends and by thinking out mechanisms of more and more geometrical form. Whether nature be conceived as an immense machine regulated by mathematical laws, or as the realization of a plan, these two ways of regarding it are only the consummation of two tendencies of mind which are complementary to each other, and which have their origin in the same vital necessities. Continue reading “THE THREE R’s”

TIME IT’S TIME

Image result for henri bergson

The finished portrait is explained by the features of the model, by the nature of the artist, by the colors spread out on the palette; but, even with the knowledge of what explains it, no one, not even the artist, could have foreseen exactly what the portrait would be, for to predict it would have been to produce it before it was produced — an absurd hypothesis which is its own refutation. Even so with regard to the moments of our life, of which we are the artisans. Each of them is a kind of creation. And just as the talent of the painter is formed or deformed—in any case, is modified—under the very influence of the works he produces, so each of our states, at the moment of its issue, modifies our personality, being indeed the new form that we are just assuming. It is then right to say that what we do depends on what we are; but it is necessary to add also that we are, to a certain extent, what we do, and that we are creating ourselves continually. This creation of self by self is the more complete, the more one reasons on what one does. For reason does not proceed in such matters as in geometry, where impersonal premisses are given once for all, and an impersonal conclusion must perforce be drawn. Here, on the contrary, the same reasons may dictate to different persons, or to the same person at different moments, acts profoundly different, although equally reasonable. The truth is that they are not quite the same reasons, since they are not those of the same person, nor of the same moment. That is why we cannot deal with them in the abstract, from outside, as in geometry, nor solve for another the problems by which he is faced in life. Each must solve them from within, on his own account. Continue reading “TIME IT’S TIME”